Government General Degree College, Chapra

<u>LESSON PLAN 2022-23</u> JULY-DECEMBER

Department of Mathematics

B.Sc. Mathematics (GENERAL) <u>SEMESTER-I</u> <u>Mode of teaching- Theory</u>

Course Name	Topic Name	Teacher (with no. of classes)
GCC-T-01	 Complex Numbers: De 	Biswajit Paul
Algebra & Analytical Geometry	Moivre's theorem and its applications. Exponential, Sine, Cosine and Logarithm of a complex number. Definition of az. Inverse circular and hyperbolic functions.	(30 lectures)
	 Polynomials: Fundamental theorem of algebra (Statement only). Polynomials with real coefficients, nature of roots of an equation (surd or complex roots occur in pairs). Statement of Descartes rule of signs and its applications. Relation between roots and coefficients, transformations of equations. Cardan's method of solution of a cubic equation. 	
	 Rank of a matrix: Determination of rank either by considering minors 	Asim Kumar Das (30 lectures)

	1
or by sweep-out process. Consistency and solution of a system of linear equations with not more than 3 variables by matrix method.	
• Equivalence relations and partitions. Functions, composition of functions, invertible functions, one to one correspondence and cardinality of a set.	
• Definition and elementary properties of groups. Concepts of permutation Group, alternating group, finite groups: , . The group of integers under addition modulo n.	
 Order of an element, order of a group, subgroups and examples of subgroups. 	
 Transformations of rectangular axes: Translation, rotation and their combinations. Invariants. 	Aninda Chakraborty (35 lectures)
• General equation of second degree in x and y: Reduction to canonical forms. Classification of conics.	
• Pair of straight lines: Condition that the general equation of 2nd degree in and may represent two straight lines. Point of intersection of two intersecting straight lines.	
Angle between two lines given by Equation of bisectors. Equation of two lines joining the origin to the points in which a line	

meets a conic.	
• Polar equation of straight lines and circles, polar equation of a conic refers to a focus as a pole, polar equation of chord joining two points, polar equations of tangents and normals.	

- 1. TituAndreescu and DorinAndrica, Complex Numbers from A to Z, Birkhauser.
- 2. W. S. Burnstine and A.W. Panton, Theory of Equations, Nabu Press.
- 3. I. N. Herstein, Topics in Algebra, Wiley Eastern Limited, India.
- 4. K. B. Dutta, Matrix and Linear Algebra, Prentice-Hall of India Pvt. Ltd.
- 5. David C. Lay, Linear Algebra and its Applications, Pearson Education Asia, Indian Reprint.
- 6. P. K. Saikai, Linear Algebra, Pearson.
- 7. K. Hoffman, R. Kunze, Linear Algebra, Pearson.
- 8. John B. Fraleigh, A First Course in Abstract Algebra, Pearson.
- 9. P. R. Vittal, Analytical Geometry 2D and 3D, Pearson.
- 10. S. L. Loney, Co-ordinate Geometry, Arihant Publications.

<u>Tutorial classes will be taken as pr requirement each week on Wednesday 2 P.M.</u> <u>Total no. of Tutorial Classes = 14.</u>

At the end of each month an Internal Assessment/Class Test/Home Assignment of 25 marks will be conducted.

After continuous evaluation based on class participation and Internal Assessment/Class Test/Home Assignment, remedial classes will be taken if necessary.

SEMESTER-III Mode of teaching- Theory

Course Name	Topic Name	Teacher (with no. of classes)
GCC-T-03	 Review of algebraic and 	Aninda Chakraborty
Real Analysis	order properties of $\mathbb R.$	(75 lectures)
	 Idea of countable sets, uncountable sets and uncountability of ℝ. Countability of ℚ. 	
	 Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infima. 	
	 Completeness property of R and its equivalent properties. 	
	 The Archimedean property, density of rational (and Irrational) numbers in R, intervals. 	
	• Intervals, neighborhood of a point in R, Interior points, Limit points of a set, isolated points, open set, closed set, union and intersection of open and closed sets. derived set, Closure of a set, Interior of a set.	
	 Bolzano-Weierstrass theorem for sets (statement only). 	
	 Sequences, bounded sequence, convergent sequence, Sandwich 	

	theorem.	
	 Cauchy's convergence criterion for sequences. Cauchy's theorem on limits 	
	 Monotone sequences, monotone convergence theorem (without proof). 	
	 Infinite series,Convergence and divergence of infinite series, Cauchy's criterion. Series of positive terms, Geometric Series, p-Series. 	
	• Tests for convergence: comparison test, limit comparison test, ratio test: D'Alembert's ratio test, Raabe's test, Cauchy's root test.	
	• Alternating series, Leibnitz test (without proof), definition and examples of Absolute and conditional convergence.	
	• Power series and radius of convergence (problems only).	
G-SEC-T-1A Logic & Sets	• Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contrapositive and inverse proportions and precedence of logical operators.	Aninda Chakraborty (10 lectures)
	 Propositional equivalence: Logical equivalences. 	
	 Predicates and quantifiers: Introduction, quantifiers, binding variables and negations. 	

	 Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. 	Asim Kumar Das (7 lectures)
	• Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.	
	• Difference and Symmetric difference of two sets. Set identities, generalized union and intersections.	Biswajit Paul (8 lectures)
	• Relation: Product set. Composition of relations, types of relations, partitions, equivalence Relations with example of congruence modulo relation. Partial ordering relations, -ary relations.	
G-SEC-T-1B Vector Calculus	• Differentiation and partial differentiation of a vector function. Derivative of sum, dot product and cross product of two vectors.	Asim Kumar Das (25 lectures)
	 Gradient, divergence and curl with applications. Vector integration: Line, surface and volume integrals. 	
	 Green's theorem (statement only), surface integrals, integrals over parametrically defined surfaces. Stoke's theorem (statement only), divergence theorem (statement only). Applications of Green's, 	

Stoke's and divergence	
theorems.	

GCC-T-03

1. T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.

2. R. G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and Sons (Asia) P.Ltd.

3. E. Fischer, Intermediate Real Analysis, Springer Verlag.

4. S. K. Berberian, a First Course in Real Analysis, Springer Verlag, New York.

5. K. A. Ross, Elementary Analysis- The Theory of Calculus Series- Undergraduate Texts in Mathematics, Springer.

6. V. Karunakaran, Real Analysis, Pearson.

7. Terence, Tao, Analysis I, Hindustan Book Agency.

G-SEC-T-1A

- 1. R. P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education.
- 2. P. R. Halmos, Naive Set Theory, Springer.
- 3. E. Kamke, Theory of Sets, Dover Publishers.
- 4. R. R. Stoll, Set Theory and Logic, Dover Publications.

G-SEC-T-1B

- 1. G. B. Thomas and R. L. Finney, Calculus, Pearson Education, Delhi.
- 2. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons.
- 3. P. C. Matthew's, Vector Calculus, Springer Verlag London Limited.
- 4. J. E. Marsden, A. Tromba, Vector Calculus, McGraw Hill.
- 5. M. R. Spiegel, Schaum's outline of Vector Analysis.

6. P. K. Nayak, Vector Algebra and Analysis with Application, University Press.

Tutorial classes will be taken as pr requirement each week on Monday & Wednesday 2 P.M. Total no. of Tutorial Classes = 14 (for gradit 6). 6 (for gradit 2)

Total no. of Tutorial Classes = 14 (for credit 6), 6(for credit 2).

At the end of each month an Internal Assessment/Class Test/Home Assignment of 25 marks will be conducted.

After continuous evaluation based on class participation and Internal Assessment/Class Test/Home Assignment, remedial classes will be taken if necessary.

<u>SEMESTER-V</u> Mode of teaching- Theory

Course Name	Topic Name	Teacher (with no. of classes)
G-DSE-T-1A	 Types of matrices. Rank of 	Asim Kumar Das
Matrices and Linear Algebra	a matrix. Invariance of rank	(75 lectures)
	under elementary	
	transformations. Reduction	
	to normal form, Solutions of	
	linear homogeneous and	
	non-homogeneous	
	equations with number of	
	equations and unknowns	
	upto four.	
	 Matrices in diagonal form. 	
	Reduction to diagonal form	
	upto matrices of order	
	3.Computation of matrix	
	inverses using elementary	
	row operations. Rank of	
	matrix. Solutions of a	
	system of linear equations	
	using	
	matrices. Illustrative	
	examples of above concepts	
	from Geometry, Physics,	
	Chemistry, Combinatorics	
	and Statistics.	
	 Vector spaces, subspaces, 	
	algebra of subspaces,	
	quotient spaces, linear	
	combination of vectors,	
	linear span, linear	
	independence, basis and	
	dimension, dimension of	
	subspaces.	
	 Linear transformations, 	
	null space, range, rank and	
	nullity of a linear	
	transformation, matrix	
	representation of a linear	
	transformation, algebra of	

	linear transformations. Dual Space, Dual Basis, Double Dual, Eigen values and Eigen vectors, Characteristic Polynomial. Isomorphisms, Isomorphism	
G-DSE-T-1B Complex Analysis	 Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy- Riemann equations, sufficient conditions for differentiability. Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy-Goursat theorem, Cauchy integral formula. Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples. Laurent series and its examples. 	Biswajit Paul (75 lectures)
G-SEC-T-3A Integral Calculus	• Integration by Partial fractions, integration of rational and irrational functions. Properties of definite integrals. Reduction	Aninda Chakraborty (25 lectures)

	formulae for integrals of rational, trigonometric, exponential and logarithmic functions and of their combinations. • Areas and lengths of curves in the plane, volumes and surfaces of solids of revolution. • Double and Triple integrals.	
G-SEC-T-3B Vector Calculus	 Differentiation and partial differentiation of a vector function. Derivative of sum, dot product and cross product of two vectors. Gradient, divergence and curl with applications Vector integration. Line, Surface and Volume integrals. 	Biswajit Paul (25 lectures)

G-DSE-T-1A

1. S. H. Friedberg, A. L. Insel and L. E. Spence, Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

2. Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989.

3. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004.

4. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.

5. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

6. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

G-DSE-T-1B

1. James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 8th Ed., McGraw – Hill International Edition, 2009.

2. Joseph Bak and Donald J. Newman, Complex analysis, 2nd Ed., Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., New York, 1997.

G-SEC-T-3A

- 1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 2. H. Anton, I. Bivens and S. Davis, *Calculus*, John Wiley and Sons (Asia) P. Ltd., 2002.

G-SEC-T-3B

- 1. G.B. Thomas and R.L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.
- 2. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd. 2002.

3. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.

<u>Tutorial classes will be taken as pr requirement each week on Monday & Wednesday 2</u> <u>P.M.</u> <u>Total no. of Tutorial Classes = 14 (for credit 6), 6(for credit 2).</u> <u>At the end of each month an Internal Assessment/Class Test/Home Assignment of 25</u> <u>marks will be conducted.</u> <u>After continuous evaluation based on class participation and Internal Assessment/Class</u> <u>Test/Home Assignment, remedial classes will be taken if necessary.</u>

Government General Degree College, Chapra

<u>LESSON PLAN 2022-23</u> <u>JANUARY-JUNE</u> Department of Mathematics

B.Sc. Mathematics (GENERAL) <u>SEMESTER-II</u> <u>Mode of teaching- Theory</u>

Teacher (with no. of classes)
ns Biswajit Paul l, limit (35 lectures) anction mits.
ve: nd its ns of vsx, rosx
Euler's eous nree
is: ems
s netrical value e and of in's nge's of and eries of
an v ange its o laur gran ns c or's ite s

 (1+x)ⁿ, log(1+x) with restrictions wherever necessary. Application of the principle of maxima and minima for a function of a single variable. 	
• Reduction formulae, derivations and illustrations of reduction formulae of the type fsin ⁿ xdx, fcos ⁿ xdx, ftan ⁿ xdx, fsec ⁿ xdx, f(log x) ⁿ dx, fsin ⁿ x cos ^m xdx	Asim Kumar Das (15 lectures)
• First order equations: (i) Exact equations and those reducible to such equations. (ii) Euler's and Bernoulli's equations (Linear). (iii) Clairaut's Equations: General and Singular solutions.	Aninda Chakraborty (25 lectures)
• Second order differential equation: (i) Method of variation of parameters, (ii) Method of undetermined coefficients.	

- 1. R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.
- 2. T. Apostol, Mathematical Analysis, Narosa Publishing House.
- 3. W. Rudin, Principles of Mathematical Analysis, Tata McGraw-Hill
- 4. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc.

- 5. G. B. Thomas and R.L. Finney, Calculus, Pearson Education.
- 6. Santi Narayan, Integral Calculus, S. Chand.

<u>Tutorial classes will be taken as pr requirement each week on Wednesday 2 P.M.</u> <u>Total no. of Tutorial Classes = 14.</u> <u>At the end of each month an Internal Assessment/Class Test/Home Assignment of 25</u> <u>marks will be conducted.</u> <u>After continuous evaluation based on class participation and Internal Assessment/Class</u> <u>Test/Home Assignment, remedial classes will be taken if necessary.</u>

A parent teacher meeting will be arranged after every 3 months if required.

SEMESTER-IV Mode of teaching- Theory

Course Name	Topic Name	Teacher (with no. of classes)
GCC-T-04	• Introduction to linear	Aninda Chakraborty
Linear Programming	programming problems,	(75 lectures)
Problems and Game Theory	Graphical solution of LPP.	
	• Convex sets. Basic solutions and non-basic solutions. Reduction of	
	D.P.S HOIII D.S .	
	• Simplex method, two-phase method, Big- <i>M</i> method and their comparison.	
	• Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.	
	• Transportation problem and its mathematical formulation, northwest-corner method,	

G-SEC-T-2A Graph Theory	 least cost method and Vogel's approximation method for determination of initial basic solution. Algorithms for solving transportation problems. Assignment problem and its mathematical formulation, Hungarian method for solving assignment problem. Game theory: formulation of two-person zero sum games. Solving two-person zero sum games. Games with mixed strategies. Graphical solution procedure. Solving game Using Simplex Algorithm. Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi-partite graphs isomorphism of graphs. Eulerian circuits, Eulerian graphs, semi-Eulerian graphs, Hamiltonian cycles. Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph. Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm. 	Aninda Chakraborty (25 lectures)
G-SEC-T-2B Operating System (Linux)	 Linux – The operating system: Linux history, Linux features, Linux distributions, Linux's relationship to Unix, overview of Linux 	Asim Kumar Das (25 lectures)

architecture, installation,	
startup scripts, system	
processes (an overview),	
Linux security.	
ç	
• The Ext2 and Ext3 file	
systems: General	
characteristics of the Ext3	
file system, file permissions	
User management: types of	
users, the powers of root.	
managing users (adding and	
deleting): using the	
command line and GUI	
tools	
10015.	
• Resource management in	
I inux: file and directory	
management system calls	
for files process	
Management signals IPC:	
Pines FIEOs System V	
IPC message queues	
n C, message queues,	
mamory management	
library and system calls for	
monary and system cans for	
memory.	

GCC-T-04

- 1. Hamdy A. Taha, Operations Research, An Introduction, Prentice-Hall India.
- 2. G. Hadley, Linear Programming, Narosa Publishing House, New Delhi.
- 3. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and Network Flows, John Wiley and Sons, India.
- 4. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, Tata McGraw Hill, Singapore.
- 5. S.I. Gass, Linear Programming: Methods and Applications, Dover Publications.
- 6. T. Veerarajan, Operation Research, University Press.
- 7. K. Swarup, P.K. Gupta and Man Mohan, Operations Research, Sultanchand.

G-SEC-T-2A

- 1. B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge.
- 2. R. J. Wilson, Introduction to Graph Theory, Pearson.
- 3. Rudolf Lidl, Gunter Pilz, Applied Abstract Algebra, Undergraduate Texts in Mathematics, Springer.
- 4. Edgar G. Goodaire, Michael M. Parmenter, Discrete Mathematics with Graph Theory, Pearson Education.

G-SEC-T-2B

- 1. Arnold Robbins, Linux Programming by Examples, The Fundamentals, Pearson Education.
- 2. Cox K, Red Hat Linux Administrator's Guide, PHI.
- 3. R. Stevens, UNIX Network Programming, PHI.
- 4. Sumitabha Das, UNIX Concepts and Applications, TMH.

<u>Tutorial classes will be taken as pr requirement each week on Monday & Wednesday 2</u> <u>P.M.</u>

Total no. of Tutorial Classes = 14 (for credit 6), 6(for credit 2).

At the end of each month an Internal Assessment/Class Test/Home Assignment of 25 marks will be conducted.

<u>After continuous evaluation based on class participation and Internal Assessment/Class</u> <u>Test/Home Assignment, remedial classes will be taken if necessary.</u>